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ABSTRACT SUBMARINE LANDSLIDES AND

The outer continental shelf off southern Virginia and North Carolina might be in the initial MARGIN MORPHOLOGY
stages of large-scale slope failure. A system of en echelon cracks, resembling small-offset normal Coastal regions face increasing threats from a
faults, has been discovered along the outer shelf edge. Swath bathymetric data indicate that aboutariety of natural hazards as their populations
50 m of down-to-the-east (basinward) normal slip has occurred on these features. From a societajrow and urban areas expand. Development of an
perspective, we need to evaluate the degree of tsunami hazard that might be posed by a major subnproved understanding and forecasting of these
marine landslide, such as the nearby late Pleistocene Albemarle-Currituck slide, if it nucleated onhazards must be considered a priority in order to
the newly discovered crack system. Toward this goal, a tsunami scenario is constructed for thenitigate future threats. Media coverage and
nearby coastal zone based on the estimated volume and nature of the potential slide. Although storm tracking has increased public awareness of
maximum tsunami height of a few to several meters is predicted, the actual extent of floodingthe damage to coastal communities caused by
would depend on the tidal state at the time of tsunami arrival as well as the details of the hinterlandsevere storms. Tsunamis resulting from offshore
topography. The Virginia—North Carolina coastline and lower Chesapeake Bay would be most at earthquakes, landslides, and volcanic activity are
risk, being nearby, low lying, and in a direction opposite to potential slide motion. equally destructive but rarer events. As a result,
public awareness of tsunamis is limited and our
capability to forecast when or where they will
strike is still underdeveloped (Synolakis et al.,
1997; Kawatat et al., 1999). Marine geologists
have long appreciated the importance of sub-
marine landslides in the development of conti-
nental margin seascapes (Booth et al., 1993;
Evans et al., 1996; Embley and Jacoby, 1986),
but until recently little attention has been given to
the potential hazards that large submarine slides
pose to coastal communities in terms of asso-
ciated tsunamis (Synolakis et al., 1997). The deva-
stating tsunami that struck northern Papua New
Guinea in July 1998, killing about 2000, brought
the problem of tsunami hazards triggered by sea-
floor deformation into sharp focus (Kawatat et al.,
1999; Tappin et al., 1999). It is often difficult to
differentiate tsunamis generated by landslides
from those generated by earthquakes on the basis
of teleseismic records (Hasegawa and Kanamori,
1987; Julian et al., 1998). Tsunamis are com-
monly much larger than predicted from earth-
quake magnitude, suggesting that landslides play
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Canyop~ 79 an important role in tsunami generation (Tappin

et al., 1999). Most researchers agree on the need
for more and better bathymetric surveys to find
evidence for past landsliding, and to identify areas
of seafloor susceptible to future slope failure
(Synolakis et al., 1997).

In this paper we draw attention to a system of
en echelon cracks recently discovered along a
40-km-long section of the outer continental shelf
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Figure 1. System of en echelon cracks, resem-
bling small offset normal faults, recently
discovered off Virginia and North Carolina
between Norfolk Canyon and Albemarle-
Currituck submarine slide using NOAA
gridded bathymetry. Inset A shows enlarge-
ment of en echelon cracks and inset B shows
location map.
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off southern Virginia and North Carolina. Theseslides nucleating on this en echelon crack systeconduits for many small-scale events, and the
features are located in water depths of 100might trigger a tsunami that poses a danger targe-scale landslides to be temporally infre-
200 m between the Norfolk Canyon and theopulations along the adjacent coast. quent, and spatially isolated events. When these
Albemarle-Currituck submarine slide (Figs. 1 The swath data illustrate how large submarinifrequent large-scale slope failures occur, they
and 2). The asymmetric shape of the features @tides and canyon systems shape the morpholoeffectively reset or smooth the continental slope
vertical cross section suggests that about 50 maffthe U.S. Atlantic continental margin (Figs. 1-3)by undermining and removing canyon systems,
down-to-the-east normal slip of the continentalWe recognize two different categories of slop&hich are forced to regenerate over time follow-
shelf edge has already occurred on a failufailure: (1) smaller scale failures that either forning the landslide event. Evidence for this is
surface subparallel to the upper continental slognyons, or occur within and are channeled bshown by the small canyons that are starting to
(Fig. 3). This asymmetry is best explained by thexisting canyon systems, regardless whether thegenerate within the Albemarle-Currituck slide
existence of a normal fault with collapse andanode of failure was progressive (top down), oscar at depths of ~1500 m (Figs. 1 and 3).
rollover of the hanging wall into the fault trace retrogressive (bottom up); and (2) larger scale, The two scales of slope failure proposed here
There are two reasons for studying these featuresitastrophic failures like the Albemarle-Currituckpredict that the morphology of the resulting debris
First, knowledge about these incipient submaringlide (Figs. 1-3) that undermine large areas afeposits downslope from the failure scarp should
landslides will lead to a better understanding afanyons and effectively erase preexisting canyaiso vary as a function of failure mode. Funneled,
how cycles of large-scale slope failure, canyomorphology. Because work on land has showeoalescing slide deposits like the Baltimore-
cutting, and sedimentation interact to create théat landslide size cumulative frequency statisticAccomac slide (Figs. 1 and 2) reflect failures that
observed margin morphology. Second, it ifollow power-law or fractal distributions (e.g., form canyons or occur within canyon systems,
important to understand the hazard implicationslovius et al., 1997), we expect the canyon sysnd their downslope morphology is affected by
of these features. Any future submarine landems to be steady-state features because they e evolving and/or preexisting canyon relief. In
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Figure 2. GLORIA sidescan
imagery collected by U.S.
Geological Survey (EEZ-
SCAN 87 Scientific Staff,
1991). Slide deposits ap-
pear to vary as function of
failure mode and produce
(1) funneled, coalescing
slide deposits (e.g., Balti-
more-Accomac slide) and
(2) large blocky slide de-
posits (e.g., Albemarle-
Currituck slide). Contours
from Figure 1 are coregis-
tered on GLORIA sidescan.
Inset A shows enlargement
of en echelon cracks.
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the GLORIA sidescan data (Fig. 2), mass-wastingontinental slope and gas hydrate decompositiacfSUNAMI GENERATION AND HAZARD
debris deposits can be recognized because of theiay occur in slope sediments (Kvenvolden, Extremely large landslides are a feature of
generally brighter backscatter compared to se&993). We propose that secular warming ofid-ocean volcanic islands like the Hawaiian
floor covered by hemipelagic finer grained sedibottom water during interglacials caused by conislands (Moore et al., 1989; Normark et al., 1993)
ments (Schlee and Robb, 1991). Debris channelpétition and deflection of water masses couldnd the Canary Islands (Watts and Masson,
in and by canyon systems tends to show as narraléo cause gas hydrate decomposition and cond®95). Passive continental margins are also sites
ribbons of bright backscatter, as for the Norfollquent slope failure. During glacial periods, intensief slope instability and major landslides (Embley
and Washington Canyons and the coalescirfged North Atlantic Intermediate Water (Boyle and Jacobi, 1986). If a large submarine landslide
deposits associated with the Baltimore-Accomaand Keigwin, 1987) could deflect the warmemvere to occur on a margin adjacent to a popu-
slide (Fig. 2). Conversely, large sheet-like areasulf Stream seaward away from the U.S. contlated coastal area, it could be catastrophic be-
of bright backscatter are associated with theental slope. As the production of North Atlanticcause of tsunami generation. Only 71 yr ago, a
blocky debris fields of large slope failures like théntermediate Water diminishes during intertsunami from the landslide associated with the
Albemarle-Currituck slide that undermine severajlacials (Boyle and Keigwin, 1987), the Gulfmagnitude 7.2 Grand Banks earthquake of 1929
canyon systems. Stream would return to its present position. Bdeft 51 dead along the south coast of Newfound-
Prior et al. (1986) proposed that the Albemarlezause of their extreme sensitivity to temperatudand (NOAA, 1999). Tsunami wave heights
Currituck slide is actually a slide complex com{Kvenvolden, 1993), gas hydrates in the uppeaecorded from the Grand Banks earthquake and
prising two main slides, one within another, proseveral meters sub-seafloor could melt over tHandslide varied from an estimated 4-12 m for
duced by retrogressive slope failure in the lat&8 k.y. time interval since the last glacial maxisouthern Newfoundland, north of the epicenter,
Pleistocene. Assuming that the upper 100 m @fium as a result of changing bottom-water tente less than 1 m along the Nova Scotia coast to
sediments failed, estimates from GLORIA angeratures. One implication of such a triggeringhe west (e.g., Murty and Wigen, 1976).
bathymetric data (Schlee and Robb, 1991) placeechanism is that the upper part of continental Tsunamis generated by landslides have been
the total volume of sediment released by thslopes, where gas hydrate should occur at emiodeled using hydrodynamic shallow-water
Albemarle-Currituck slide at about 150 &m tremely shallow depths (Booth et al., 1993gquations (Harbitz, 1992; Henry and Murty,
(Figs. 1 and 2). This value is consistent with &venvolden, 1993), might undergo slope failurel992). The wave structure for relatively slow sea-
previous estimate of 128 Fftom deep-tow data with increasing frequency over time—a possibléloor motions like submarine slides is strongly
(Prior et al., 1986). For comparison, the voluméink between recent climate change and sulzlependent on the time-displacement history of
of turbidites deposited from the 1929 Grandnarine slope failure. In summary, the scale anithe movement. In particular, large wave-height,
Banks slide is about 185 Rpbased on sidescan, architecture of slope failures and resulting debrishort-period tsunamis result from landslides that
seismic, and coring data (Piper and Aksu, 1987dleposits are governed by the location and type atcelerate rapidly to a high maximum velocity.
triggering mechanism. Debris chutes and canyorssudden but small-volume landslide can there-
TRIGGERING MECHANISMS reflect small-scale failure triggered along thdore generate a tsunami that is more dangerous
Many processes have been suggested as tridppe, whereas the large failures (e.g., Albemarl¢han a tsunami from a relatively larger but slower
gers for submarine slope failures along conti€urrituck) that indent the shelf edge appear to t&ide. The succession of trans-Atlantic cable
nental margins. For example, during sea-levetiggered by processes that affect, weaken, afmieaks on the lower slope and rise during the
lowstands, ground waters may discharge on thendermine the lower slope. 1929 Grand Banks event (Heezen and Ewing,
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Figure 3. Three-dimen-
sional perspective of conti-
nental margin off southern
Virginia and North Caro-
lina looking in direction
aligned with shelf edge.
Shading imitates illumina-
tion of seafloor by artificial
sun in northwest. Upper
Currituck failure surface is
smooth area in foreground,
and en echelon crack sys-
tem is seen farther north
on outermost shelf. Inset
shows three representa-
tive bathymetric profiles
over cracks, and their loca-
. tions are noted on per-

2 Wy : i - =5 ; - el spective image. Location
Albemarle-Currituck = e , . i R i e j of perspective image is
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1952) has been used to constrain maximum slisee know the location of the potential slide veryHeezen, B.C., and Ewing, M., 1952, Turbidity currents
velocity in the models (Harbitz, 1992). The aziwell, we do not yet know if and when slope fail- ~ @nd submarine slumps, and the 1929 Grand
muthal variation in tsunami wave height is rewure is likely to occur. Given the risk to the coastal 3 aznskg Eégzgfg% American Journal of Science,
lated to the direction of slope failure. The largestommunity, it seems wise to invest effort toqenry, RF. and Murty, T.S., 1992, Model studies of
wave heights occur in the direction of slope faildetermine whether the en echelon cracks along the effects of the Storegga slide tsunami: Science
ure (downdip direction) and opposite to slidehe Virginia—North Carolina continental shelf ~ of Tsunami Hazards, v. 10, p. 51-62. '
motion (updip direction). The marked differenceedge are fossil features or are active and likely td°Vius: N-, Stark, C.P., and Allen, P.A., 1997, Sedi-

. . . . . . . t flux fi tain belt derived by land-
in tsunami wave heights following the Grandoroduce a potentially disastrous, large submarine 2?52 m':;);;i(rg %r;(gggyac 22 pggf_zian

Banks slide recorded to the north in Newfoundslide in the near future. Julian, B.R., Miller, A.D., and Foulger, G.R., 1998, Non-
land, which is directly updip, and in Nova Scotia double-couple earthquakes, 1, Theory: Reviews of
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A large submarine landslide, however, is a rar

event on human time scales. Despite the fact tt
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